julia

Basic equation in Lorenz (1996)

The basic equation in Lorenz (1996) is expressed as: \begin{equation} \dfrac{dX_k}{dt} =\left(X_{k+1}-X_{k-2} \right) X_{k-1}-X_k+F,\quad (k=1,\cdots ,N), \tag{L.1} \label{eq:exam-3-2-3-1} \end{equation} where the prediction variable \(X_k\) has the periodic condition: \begin{equation} X_{k-N}=X_k=X_{k+N}. \tag{L.2} \label{eq:exam-3-2-3-2} \end{equation}

Time integration for the forecast

The Lorenz96 equation (\ref{eq:exam-3-2-3-1}): \begin{equation} \dfrac{d\textbf{x}}{dt} =f(t,\textbf{x}),\quad \textbf{x} \equiv (X_1,\cdots ,X_k,\cdots ,X_N)^T \tag{F.1} \label{eq:app-1-1} \end{equation} is integrated by the standard 4th-order Runge-Kutta scheme: \begin{equation} \textbf{x} _{i+1} =\textbf{x} _i+\dfrac{\Delta t}{6} \left(\textbf{k} _1+2\textbf{k} _2+2\textbf{k} _3+\textbf{k} _4 \right) =M(\textbf{x} _i) , \nonumber \end{equation} \begin{equation} \textbf{k} _1\equiv f(t_i,\textbf{x} _i) , \nonumber \end{equation} \begin{equation} \textbf{k} _2\equiv f(t_i+\Delta t/2,\textbf{x} _i+(\Delta t/2)\textbf{k} _1) , \nonumber \end{equation} \begin{equation} \textbf{k} _3\equiv f(t_i+\Delta t/2,\textbf{x} _i+(\Delta t/2)\textbf{k} _2) , \nonumber \end{equation} \begin{equation} \textbf{k} _4\equiv f(t_i+\Delta t,\textbf{x} _i+\Delta t\textbf{k} _3) . \nonumber \end{equation}

Initialization and configuration of an observation system simulation experiment (OSSE)

The data assimilation-forecast cycles

(Extended) Kalman Filter

Singular Evolutive Extended Kalman (SEEK) Filter

Local Ensemble Transform Kalman Filter (LETKF)

A hybrid Ensemble Kalman Filter (EnKF)

(Under construction)