Loading [MathJax]/jax/output/CommonHTML/jax.js

julia

Basic equation in Lorenz (1996)

The basic equation in Lorenz (1996) is expressed as: dXkdt=(Xk+1Xk2)Xk1Xk+F,(k=1,,N), where the prediction variable Xk has the periodic condition: XkN=Xk=Xk+N.

Time integration for the forecast

The Lorenz96 equation (L.1): dxdt=f(t,x),x(X1,,Xk,,XN)T is integrated by the standard 4th-order Runge-Kutta scheme: xi+1=xi+Δt6(k1+2k2+2k3+k4)=M(xi), k1f(ti,xi), k2f(ti+Δt/2,xi+(Δt/2)k1), k3f(ti+Δt/2,xi+(Δt/2)k2), k4f(ti+Δt,xi+Δtk3).

Initialization and configuration of an observation system simulation experiment (OSSE)

The data assimilation-forecast cycles

(Extended) Kalman Filter

Singular Evolutive Extended Kalman (SEEK) Filter

Local Ensemble Transform Kalman Filter (LETKF)

A hybrid Ensemble Kalman Filter (EnKF)

(Under construction)